Sprox® magnets are manufactured from isotropic or anisotropic magnet materials. Barium ferrite or strontium ferrite powder is compounded with thermoplastic binders to form a granulate suitable for injection molding. The granulate is then processed in customized injection molding machines using specially developed tools. This inexpensive material can be magnetized in a variety of patterns by applying magnetic fields in the injection molding machine. Subsequent magnetization is often not required. This technique is particularly cost-effective for long production runs.
The Neofer® p magnets use an isotropic NdFeB-based rare-earth material which is compounded with thermoplastic binders. The Neofer® p material types are magnetized after molding, since they are isotropic and thus not directional.
The advantage of the injection molding process for producing magnets lies in the wide range of shapes that can be produced. It is also possible for inserts such as axles, bushes or rings to be molded in, with the inserts being loaded by hand or fully automatically, depending on the quantity produced. The costs of assembly operations can be reduced as such materials allow press-fit, snap-fit and positive-fit connections with motor shafts etc.
The production process allows products to be manufactured within such tight tolerances that no reworking is generally necessary. Depending on the size of the molding, the tolerances that can be achieved are in the range 0.03 through 0.25 mm. As required, polymer-bonded materials can be turned, drilled, milled and ground and they are not as brittle as sintered materials.
The proportion of synthetic plastic materials of typically ten percent by weight mean that the magnetic properties lie below those of unmixed material. On the other hand, with anisotropic grades, it is possible to achieve a directional magnetization during the injection molding process. This in turn improves the magnetic properties.
Description | DIN IEC 60404-8-1 codes 1 | i/a | BH(max) [kJ/m3] 6 8 | Br [mT] 6 8 | HcB [kA/m] 6 8 | HcJ [kA/m] 6 8 | Density [g/cm3] | Water absorption [%] 7 | Composition | Production |
---|---|---|---|---|---|---|---|---|---|---|
Sprox 3/20p | Hard ferrite 2.7/20p | i | 2.7 | 128 | 85 | 200 | 3.2 | 0.2 | Hard ferrite + PA6 | |
Sprox 10/20p | Hard ferrite 10/20p | a | 9.8 | 222 | 151 | 207 | 3.2 | 0.2 | Hard ferrite + PA6 | |
Sprox 10/20p | Hard ferrite 10/22p | a | 10 | 220 | 155 | 223 | 3.35 | 0.01 | Hard ferrite + PPS | |
Sprox 11/20p | Hard ferrite 10/24p | a | 10 | 225 | 159 | 239 | 3.2 | 0.05 | Hard ferrite + P12 | |
Sprox 11/20p | Hard ferrite 10/21p | a | 10.3 | 235 | 159 | 215 | 3.2 | 0.2 | Hard ferrite + PA6 | |
Sprox 14/20p | Hard ferrite 14/20p | a | 14.3 | 269 | 179 | 207 | 3.4 | 0.15 | Hard ferrite + PA6 | |
Sprox 13/20p | Hard ferrite 15/22p | a | 14.7 | 273 | 179 | 222 | 3.55 | 0.15 | Hard ferrite + PA6 | |
Sprox 15/20p | Hard ferrite 15/21p | a | 15.1 | 275 | 179 | 214 | 3.57 | 0.04 | Hard ferrite + PA12 | |
Sprox 315/20p | Hard ferrite 16/23p | a | 16.5 | 290 | 189 | 226 | 3.79 | 0.13 | Hard ferrite + PA6 | |
Sprox 5f | Hard ferrite 10/20p | a | 10.3 | 240 | 168 | 199 | 3.6 | t.b.d | Hard ferrite + NBR | Calendering 3 4 |
Neofer 25/60p | REFeB 27/60p | i | 27 | 400 | 260 | 630 | 4.35 | 0.05 | NdFeB + PA11 | |
Neofer 31/100p | REFeB 30/100p | i | 30 | 400 | 290 | 1000 | 4.5 | 0.05 | NdFeB + PA11 | |
Neofer 41/100p | REFeB 36/100p | i | 36 | 460 | 310 | 1000 | 4.85 | 0.05 | NdFeB + PA11 | |
Neofer 37/60p | REFeB 37/60p | i | 37 | 470 | 300 | 600 | 4.6 | 0.05 | NdFeB + PA11 | |
Neofer 39/60p | REFeB 39/60p | i | 39 | 485 | 310 | 600 | 4.8 | 0.05 | NdFeB + PA11 | |
Neofer 44/60p | REFeB 44/60p | i | 44 | 520 | 320 | 600 | 5 | 0.05 | NdFeB + PA11 | |
Neofer 48/60p | REFeB 48/60p | i | 48 | 540 | 330 | 600 | 5.1 | 0.05 | NdFeB + PA11 | |
Neofer 55/50p | REFeB 52/52p | i | 52 | 580 | 330 | 520 | 4.85 | 0.05 | NdFeB + PA11 | |
Neofer 65/70p | REFeB 64/60p | i | 64 | 630 | 400 | 600 | 5.75 | 0.05 | NdFeB + PA12 |
1 |
Combined of approximated minimum values of (B * H)max and HcJ according to DIN IEC 60404-8-1. Gebildet aus angenäherten Mindestwerten von (B * H)max und HcJ nach DIN IEC 60404-8-1. Composé de valeurs minimales (B * H)max et HcJ suivant DIN IEC 60404-8-1. |
2 |
PA = Polyamid/ Nylon NBR = Nitrile Butadiene Rubber EPH = Expoxydharz/Resin PPS = Polyphenylensulfid |
3 | Prefered axis to rolling direction. Vorzugsrichtung zur Kalandrierrichtung. Sens préférentielle d’ aimantation au sens de calandrage. |
4 |
Machinable by cutting. Spanabhebend bearbeitbar. Usinable par enlèvement de copeaux. |
5 |
The maximum operating temperature for a magnet matrials is dependent upon the specific application and magnet geometry. Do not hasitat to contact our Application Engineers for more information. Die maximale Einsatztemperatur ist abhängig von der Anwendung, von der Magnettype sowie der Magnetgeometrie. Für weitere Informationen kontaktieren Sie bitte unsere Anwendungstechniker. La température maximale d'utilisation d'un aimant dépend de son application spécifique ainsi que de sa géométrie. N'hésitez pas à prendre contact avec nos ingénieurs d'application pour plus d'informations. |
6 | Indicated values only with optimum dimensions: shortest edge > 8 mm, volume 1 – 200 cm³. Angegebene Werte nur bei optimalen Abmessungen: Kürzeste Kante > 8 mm, Volumen 1 – 200 cm³. Valeurs uniquement pour dimensiones optimales côté le plus court > 8 mm, volumes 1 – 200 cm³. |
7 | t.b.d. to be defined noch festzulegen à établir n.a. not applicable nicht angegeben / anwendbar pas applicable |
8 |
Minimum values. Mindestwerte. Valeurs minimales. |
You need to load content from reCAPTCHA to submit the form. Please note that doing so will share data with third-party providers.
More Information